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Abstract. This work is an attempt to extend the geodesic equation on a manifold with an
additional term of a linear mapping of the tangent space and to study the geometry of a class
of curves defined by this extended version of the geodesic equation. The variational equation
of a curve in this class is derived, and is used to examine stability of a trivial solution of
a dynamical system whose configuration space is the diffeomorphism group of the circle. In
particular, in regard to the KdV equation, this equation is compared with the Jacobi equation
on the Bott–Virasoro group.

A solution of a dynamical system with a Lie–Poisson structure can be formulated as a
geodesic in a Lie group with an appropriate metric [6]. In fact, this formulation has been
applied to several systems (or equations), such as the Euler equations for a rigid body and for
an inviscid incompressible fluid in a compact region [1], the periodic KdV equation [10] and
the periodic filament equation [11]. The Lie groups associated with the systems just referred
to are the rotation groupSO3, the diffeomorphism groupD(M) of a compact Riemannian
manifoldM, the Bott–Virasoro group̂D(S1) and the loop groupLSO3, respectively. The
metric on each Lie group is one-sided invariant and is taken to correspond to the Lagrangian
of each system. A geodesic is a stationary curve of the length integral with respect to this
metric and the length of its velocity vector is constant along it, which ensures Hamilton’s
principle.

In this formulation, an element of a Lie group represents a configuration of a system.
Therefore the geometrical analysis of the Lie group enables us to study the behaviour of
the system in the configuration space. In particular, solving the Jacobi equation, which
governs infinitesimal variations of a geodesic, enables us to examine the stability of its
solutions in the light of its configurations. It should be noted that the stability in this
light differs from the conventional stability of solutions of the original evolution equation.
In the case of inviscid incompressible fluids, for instance, it is known that there exist
solutions stable in the latter sense but unstable in the former sense [7]. The aim of this
work is to extend the stability analysis considered above to more general systems (possibly
without Lie–Poisson structures). We introduce a class of curves in a manifold defined by
an extension of the geodesic equation, and derive the variational equation of a curve in
this class. This variational equation describes evolution of variation vector fields of the
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curve. As an example of the use of this equation, we consider a dynamical system whose
configuration space is the diffeomorphism group of the circle.

We start by providing some definitions on the differential geometry which will be used
later. The reader may wish to consult, e.g. [4]. Instead of a Lie group with a Riemannian
metric (and so with a Riemannian connection), we will consider first a more general space,
namely a manifoldM with an affine connection∇. The torsion and the curvature tensor
fields onM, T andR, are defined as

T (X, Y ) = ∇XY −∇YX − [X, Y ] (1)

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (2)

where X, Y and Z are vector fields onM and [·, ·] denotes the bracket operation,
[X, Y ]f = X(Yf ) − Y (Xf ). Let τ be a tensor field of type(1, 1) on M. For each
x ∈ M, τx can be regarded as a linear mapping of the tangent spaceTxM. This linear
mapping will be denoted byτ(·) (or τx(·) at x ∈ M). Now we introduce the operator̂∇ by
writing

∇̂XY = ∇XY + τ(X). (3)

This operator defines a curve inM as an affine connection defines a geodesic; such a curve
will be called aτ -geodesic. More precisely, a curveξ(t), −∞ 5 a < t < b 5 ∞, in M
will be called aτ -geodesic if∇̂ξ̇ ξ̇ exists and equals 0 for allt , whereξ̇ denotes the velocity
vector ofξ , i.e. ξ̇ = d

dt ξ ∈ TξM. Before we derive the variational equation of aτ -geodesic,
it is convenient first to examine the operatorTτ defined by

Tτ (X, Y ) = ∇Xτ(Y )−∇Y τ (X)− τ([X, Y ]). (4)

It follows from this definition that

Tτ (X, Y ) = −Tτ (Y,X) (5)

Tτ (fX, Y ) = f Tτ (X, Y ) = Tτ (X, f Y ) (6)

in other words,Tτ is an antisymmetric tensor field.
Let us now consider the variational equation of aτ -geodesic, i.e. the equation which

governs variation vector fields of aτ -geodesic. A variation of aτ -geodesicξ(t), 05 t 5 1,
is a one-parameter family ofτ -geodesicsφs(t), −ε < s < ε, such thatφ0(t) = ξ(t). More
precisely, it is a smooth mapping of [0, 1]× (−ε, ε) into M, (t, s)→ φ(t, s), such that (i)
for each fixeds ∈ (−ε, ε), φs(t) = φ(t, s) is a τ -geodesic; (ii)φ0(t) = ξ(t) for 0 5 t 5 1
(cf [5]). Here let us define vector fields onM, X andJ , by X = dφ( ∂

∂t
) andJ = dφ( ∂

∂s
).

For each fixeds, X is the velocity vector field ofφs(t) and J is a variation vector field
alongφs(t). It is clear thatX satisfies theτ -geodesic equation

∇̂XX = 0. (7)

It also follows from the definitions ofX andJ that

[J,X] = dφ

([
∂

∂s
,
∂

∂t

])
= 0 (8)

and so

T (J,X) = ∇JX −∇XJ. (9)

Using these equations, we can confirm that

∇X∇XJ +∇XT (J,X)+∇Xτ(J )+ R(J,X)X + Tτ (J,X) = 0 (10)
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which, for s = 0, becomes the required equation:

∇ξ̇∇ξ̇ J +∇ξ̇ T (J, ξ̇ )+∇ξ̇ τ (J )+ R(J, ξ̇ )ξ̇ + Tτ (J, ξ̇ ) = 0. (11)

This is a second-order linear differential equation forJ . HenceJ is uniquely determined by
values ofJ and∇XJ at one point ofξ(t). Equation (11) andJ will be called theτ -Jacobi
equation and aτ -Jacobi field, respectively. Now we consider the particular case where∇
is the Riemannian connection compatible with a Riemannian metric〈·, ·〉. Let ξ(t) be a
τ -geodesic such thaṫξ(0) = U andJ (t) a τ -Jacobi field alongξ(t) such thatJ (0) = 0 and
∇ξ̇ J (0) = V . Then, theτ -Jacobi equation (11) can be used to express the Taylor series for
〈J, J 〉 as

〈J, J 〉 = 〈V, V 〉t2− 〈τ(V ), V 〉t3+ ( 1
3(〈τ 2(V ), V 〉 − 〈R(V,U)U, V 〉 − 〈Tτ (V,U), V 〉

−2〈(∇Uτ)(V ), V 〉)+ 1
4〈τ(V ), τ (V )〉)t4+O(t5). (12)

We have obtained the formula of theτ -Jacobi equation. As an example of the use of this
equation, we will next consider a dynamical system whose configuration space isD(S1),
the group of orientation preserving smooth diffeomorphisms of the circleS1. The group
multiplication inD(S1) is the composition of diffeomorphisms.D(S1) with the inverse limit
topology is an inverse limit Hilbert (ILH) Lie group. Therefore, we will assume the smooth
manifold structure and the smooth group operations onD(S1). (For details, see [3, 9].) Let
X(S1) be the Lie algebra ofD(S1), i.e. the algebra of smooth vector fields onS1. Elements
of X(S1) will be denoted asU = u ∂

∂x
, V = v ∂

∂x
, . . . , whereu, v, . . . are functions onS1.

The commutator inX(S1) is the negative of the bracket operation for vector fields onS1;
that is, it is given by

[U,V ] = −(uvx − uxv) ∂
∂x

(13)

where we have introduced the short-hand notation for partial derivatives. Now let us suppose
that X(S1) is equipped with theL2 inner product

〈U,V 〉e =
∫
S1
uv dx (14)

and a linear mapping of the form

τe(U) = τe(u) ∂
∂x
= (a1ux + a2uxx + · · · + anunx) ∂

∂x
(15)

wheren is a positive integer. The inner product (14) and the linear mapping (15) induce
on D(S1) the right-invariant metric and the right-invariant tensor field of type(1, 1),
respectively. Letξ(t) be a τ -geodesic inD(S1) with these metric and tensor field, and
let U(t) be the curve inX(S1) defined byU = dξRξ−1(ξ̇ ). Then, theτ -geodesic equation
onD(S1) is equivalent to the following evolution equation:

ut + 3uux + τe(u) = 0. (16)

To show this, we investigate first the general case. LetG be a Lie group andG its
Lie algebra with an inner product〈·, ·〉e and a linear mappingτe(·). This inner product
is extended by the right translation to induce the right-invariant metric onG; in fact, the
metric onG, 〈·, ·〉, is given by

〈Uξ , Vξ 〉 = 〈dξRξ−1(Uξ ), dξRξ−1(Vξ )〉e (17)

for ξ ∈ G andUξ , Vξ ∈ TξG, whereRξ denotes the right translation byξ , i.e.Rξ(η) = ηξ
for ξ, η ∈ G. The right invariance of this metric is obvious from the definition above.
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The linear mappingτe is also extended by the right translation to induce the right-invariant
tensor field of type(1, 1) onG, τ(·), which is given by

τ(Uξ ) = deRξ (τe(dξRξ−1(Uξ ))) (18)

for ξ ∈ G andUξ ∈ TξG, wheree is the identity element ofG. Since the metric (17)
and the tensor field (18) are right invariant, theτ -geodesic equation onG is reduced to
an evolution equation onG in the following manner. Letξ(t) be a curve inG, U(t) the
curve inG defined byU = dξRξ−1(ξ̇ ) and∇ the Riemannian connection compatible with
the metric above. We begin with the formula

(∇ξ̇ η)ξ = deRξ

(
d

dt
V + (∇URVR)e

)
(19)

whereη is a vector field alongξ andV = dξRξ−1(η) (see, e.g. [7]). It follows from this
formula that, ifξ(t) is a τ -geodesic, then theτ -geodesic equation is expressed in the form

(∇̂ξ̇ ξ̇ )ξ = deRξ

(
d

dt
U + (∇URUR)e + τe(U)

)
= 0 (20)

which is satisfied if and only if

d

dt
U + (∇URUR)e + τe(U) = 0. (21)

This completes the demonstration that theτ -geodesic equation onG is reduced to an
evolution equation onG. Now we need to express the connection∇ for right-invariant
vector fields in terms ofG. For givenX ∈ G, let XR denote the right-invariant vector field
on G which at e takes the valueX (i.e. (XR)e = X). Since the metric is right invariant,
one obtains

2〈∇URVR,WR〉 = 〈[UR, VR],WR〉 − 〈[UR,WR], VR〉 − 〈[VR,WR], UR〉 (22)

for U,V,W ∈ G. Thus the vector field∇URVR at ξ ∈ G is expressed as

(∇URVR)ξ = −deRξ ( 1
2([U,V ] − ad∗UV − ad∗V U)) (23)

where ad∗ denotes the adjoint of ad with respect to the inner product〈., .〉e, i.e.

〈ad∗UV,W 〉e = 〈V, adUW 〉e = 〈V, [U,W ]〉e (24)

for U,V,W ∈ G (see, e.g. [2]). The minus sign enters the right-hand side of equation (23)
because the Lie algebra is identified conventionally with the set of left- (not right-) invariant
vector fields on the Lie group.

Now let us return toD(S1), and obtain theτ -geodesic equation and theτ -Jacobi equation
on it. The definition (24), with equations (13) and (14), gives ad∗

UV = (2uxv + uvx) ∂∂x ,
and substitution into equation (23) yields

(∇URVR)e = (2uvx + uxv)
∂

∂x
. (25)

This and equation (21) at once give that theτ -geodesic equation onD(S1) is equivalent
to equation (16). Furthermore, letη(t) be aτ -Jacobi field along theτ -geodesicξ(t) and
V = dξRξ−1(η). Then, theτ -Jacobi equation is reduced to

vtt + 2uxvt + 4uvtx + 3u2vxx + τe(vt )− τe(u)vx + τe(ux)v + τe(uvx)− τe(uxv) = 0. (26)

This enables us to study theτ -geodesical stability of flows of the evolution equation (16).
If the linear mappingτe is taken to beτe(U) = auxxx ∂

∂x
so that (16) is the KdV equation,

then the equation above becomes

vtt + 2uxvt + 4uvtx + 3u2vxx + avtxxx − 3auxxxvx + 2auxvxxx + auvxxxx = 0. (27)
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Since a solution of the KdV equation can be described as a geodesic in the Bott–Virasoro
group D̂(S1) with theL2 metric, it is of interest to compare equation (27) with the Jacobi
equation onD̂(S1). The Bott–Virasoro group is the universal central extension ofD(S1).
Its Lie algebra is the Virasoro algebrâX(S1), which is the universal central extension of
X(S1). Elements ofX̂(S1) will be denoted asÛ = (u ∂

∂x
, a), V̂ = (v ∂

∂x
, b), . . . , where

a, b, . . . ∈ R are central elements. The commutator inX̂(S1) is given by [Û , V̂ ] =
−((uvx −uxv) ∂∂x ,

∫
S1 uxxvxdx). Let ∇ be the Riemannian connection on̂D(S1) compatible

with the right-invariant metric which at the identitŷe ∈ D̂(S1) is given by theL2 inner
product〈Û , V̂ 〉ê =

∫
S1 uv dx + ab. Then, we obtain

(∇ÛR V̂R)ê =
(

2uvx + uxv + 1
2avxxx + 1

2buxxx,
1
2

∫
S1
uxxvx dx

)
(28)

where ÛR and V̂R are right-invariant vector fields on̂D(S1) as before [8]. From this

equation, it readily follows that, if̂ξ(t) is a geodesic inD̂(S1) and Û = dξ̂Rξ̂−1(
˙̂
ξ), then

the geodesic equation corresponds to the KdV equationut +3uux +auxxx = 0 with at = 0.
Furthermore, it is straightforward to show that the Jacobi equation for a Jacobi fieldη̂(t)

along a geodesiĉξ(t) is equivalent to the following evolution equations forV̂ = dξ̂Rξ̂−1(η̂):

vtt + 2uxvt + 4uvtx + 3u2vxx + avtxxx − 3auxxxvx + 2auxvxxx + auvxxxx
+uxxx

(
bt +

∫
S1
uxxvx dx

)
= 0 (29a)(

bt +
∫
S1
uxxvx dx

)
t

= 0. (29b)

Since we are interested in perturbations of a KdV flow, we restrictV̂ to a variation which
does not varya, the coefficient of the dispersive term in the KdV equation. In this case,b

satisfies the relation

bt +
∫
S1
uxxvx dx = as = 0 (30)

so that equations (29a, b) are simplified to equation (27). That is, as far as perturbations
of a KdV flow are concerned, theτ -Jacobi equation onD(S1) is identical with the Jacobi
equation onD̂(S1).

We now leave the KdV equation and return to the evolution equation (16) of the general
form. This equation has the trivial solutionu(t, x) = c, for which theτ -Jacobi equation
(26) becomes

vtt + 4cvtx + τe(vt )+ 3c2vxx + cτe(vx) = 0. (31)

Assuming the formv(t, x) = ei(ωt+2πkx) (k ∈ Z), we obtain

(ω + 2πck)(ω + 6πck −
n∑

m=1

iam(2π ik)m) = 0. (32)

Thus, if (−1)ma2m = 0 for all m, then the solutionu(t, x) = c is τ -geodesically stable
in the sense that anyτ -Jacobi field along theτ -geodesic corresponding tou(t, x) = c is
bounded for all timet . On the other hand, if(−1)ma2m < 0 for somem, then the solution
u(t, x) = c is τ -geodesically unstable in the sense that there exists an unboundedτ -Jacobi
field along theτ -geodesic. In particular, ifτe(U) = −νuxx ∂

∂x
(ν > 0) or τe(U) = auxxx ∂

∂x

so that (16) is the Burgers equation or the KdV equation, then the solutionu(t, x) = c
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is τ -geodesically stable. It should be noted that theτ -geodesical stability of a fluid flow
implies not the stability in the velocity field but that in the fluid (or particle) configuration.

In conclusion, we mention some future problems concerning theτ -Jacobi equation (11).
Let τ1 be a tensor field of type(1, 1) onM andτ0 a vector field onM. It is easy to generalize
the τ -Jacobi equation for the case where aτ -geodesicξ(t) is defined by the equation of
the more general form∇ξ̇ ξ̇ + τ1(ξ̇ ) + τ0 = 0. This generalization enables us to study the
τ -geodesical stability of solutions of some systems with time-independent external force,
e.g. the systems described by the Navier–Stokes equation with a forcing term. On the other
hand, it seems that, if we specialize∇ or τ(·), then we can obtain more detailed results on
the geometry ofτ -geodesics. For instance, by taking equation (12) into account, we can
define the geometrical quantity forτ -geodesics which corresponds to the sectional curvature
for geodesics. These problems will be the subject of future work.

I would like to express my gratitude to Professor Tsutomu Kambe for his helpful advice.
This gratitude is also extended to members of his laboratory.
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